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The DIKé project
Julien Velcin, ERIC Lab, Université Lumière Lyon 2
MBZUAI France Lab - Workshop 2/12

DIKé project https://www.anr-dike.fr
● Funded by ANR (AAPG 2021, 2022-2025)
● Partners

○ Laboratoire Hubert Curien (LabHC), Université Jean Monnet
○ Laboratoire ERIC, Université Lumière Lyon 2
○ Naver Labs

● Objectives
○ evaluation of biases in LMs (in particular, fairness)
○ English but also French datasets for fairness and ethics of NLP systems
○ new compressed, fairer language models
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LLM compression (1)

● Transformers are over-parametrized
(#parameters >> #data)

● Can we just train smaller Transformers?
No (lottery ticket hypothesis)

● Mobile devices
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(Xiao et al, 2023)

LLM compression (2)

i) Model pruning

iii) Quantization

ii) Knowledge distillation
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Bias and Fairness
● Recent works study the link between compression and fairness (Hooker 

et al., 2019; Gonçalves et al., 2023)
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Compression impacts hate
speech detection models
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The other side of compression: Measuring and 
combating bias in pruned transformers

● Early work based on simple encoder-based models and pruning, 
presented at IDA in 2023 (Proskurina et al, 2023)

● We measure identity-based bias in pruned Transformer LMs (eg., BERT)

● We study which group of encoder layers (bottom, middle or upper) can 
be efficiently pruned without biased outcomes 

● We propose word-level supervision as a debiasing method
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Methodology
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1) Prune Transformer (BERT, DistillBERT, RoBERTa, DistillRoBERTa)
2) Fine-tune Transformer on hate speech classification task (with HateXplain) 
3) Evaluate performance, bias
4) Fine-Tune with rationales to debias the models

Here we remove
the 2 lower layers

Results: Compressed LMs are prone to bias

We count how many times:

Performance of original and pruned models on HATEXPLAIN test set
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number of groups
with a significant
difference in term of 
classification

full model 8/12 : 4 layers removed

F1 for group t overall F1

full model compressed model

Some groups in
HateXPlain:
- Men
- Women,
- African,
- Arabs,
- Asians,
- Caucasian,
...

Results: Compressed LMs rely on unimportant tokens

Performance of original and pruned models on HATEXPLAIN test set
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Solution: Supervised Attention learning 

Predicted Rationales (via attention maps)

[0,0,0,…0.25,0,0,0.3,0..16,0]

True Rationales

…
[0,0,0,…1,1,1,1,0]

…
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Results: Fine-tuning with attention loss compensates for fairness loss

Performance and fairness scores 
(Subgroup AUC) of models trained 
with word-level supervision

*λ = 0 - non-supervised attention learning

BERT Subgroup AUC scores
• .59 - without attention supervision
• .80 - with attention supervision
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Conclusion on this work

• We conducted two chains of experiments to analyze the effect of Transformer 
LMs pruning in the context of hate speech classification tasks (with and 
without attention supervision) 

• We compare both fairness and performance loss for pruned BERT, RoBERTa, 
and their distilled versions 

• We show and statistically prove that removing any layer from Transformer LMs 
results in fairness loss even when the performance loss could be negligible 

• We conducted supervised attention-learning experiments that help to reduce 
bias in pruned models
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Contribution (Proskurina et al., 2024)

● Goal of calibration is to ensure that the model outputs probabilities (prediction)
that are well aligned with the confidence of the models

● We investigate how quantization with GPTQ (Frantar et al., 2023) influences the 
calibration and confidence of LLMs

● We assess the confidence alignment between compressed and full-precision LLMs
at scale (ie various model sizes)

● We provide some explanations to the quantization loss from the initial confidence 
perspective
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Calibration and (post-training) quantization
● Good calibration: model output = prediction confidence

● Compression (quantization): we rely on GPTQ where we
want to find a quantized version of weight
to minimize the mean squared error:

18

in this bucket, we expect
10% of examples are
predicted as classe +
(here, binary classification)

ac
cu

ra
cy

confidence

quantized weights initial weights

Zero-shot Question Answering: pipeline
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is the model
well calibrated?

(CE metrics)

how far are
their weigths?
ie vs   

simple QA tasks
with no fine tuning

Data and baselines
● Data: Six standard commonsense reasoning tasks:

○ question answering involving reading comprehension (BoolQ)
○ natural text entailment (XStory-En, HellaSwag)
○ science fact knowledge (ARC, OBQA)
○ physical commonsense (PIQA)

● Baselines: causal (auto-regressive) LLMs:
○ BLOOM (560M, 1B1, 1B7, 3B, and 7B1 parameters)
○ OPT (125M, 350M, 1B3, 2B7, 6B7, and 13B)
○ Mistral-7B
○ LLaMA-7B
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Results: Quantization amplifies CE
The general trend is that quantization amplifies the pre-existing high 
calibration error present in the models before compression
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Results: Quantization affects low-confidence samples
After quantization, confidence shift is larger for samples with initial low confidence
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low confidence

Results at scale: Differences decrease with model size
Distances between original and compressed LLMs decrease as the model 
size scales up
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Conclusion on this work

● Impact of quantization on the confidence and calibration of LLMs
● Quantization leads to an increase in calibration error and statistically

significant changes in confidence levels for correct predictions
● Confidence change bigger when models unconfident before quantization
● Need to focus on calibrating LLMs, specifically on uncertain examples
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BabyLM challenge and beyond
Julien Velcin, ERIC Lab, Université Lumière Lyon 2
MBZUAI France Lab - Workshop 2/12

● Pre-training models from scratch on
corpus of the children-like vocabulary

● Main focus of the competition: language acquisition, cognitive modelling
● Our interest within the objectives of Diké project: evaluation of ethics in 

models which have ‘seen’ only children’s literature
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Our participation to the challenge
(Proskurina et al., BabyLM@CoNLL 2023)
● Two models presented to BabyLM Workshop, co-located with CoNLL 2023: 
Bebeshka (RoBERTa-based, 16M) and Zlata (GPT-based, 66M), pretrained 
on STRICT-SMALL
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with full
precision

An interesting observation on moral judgement
We did additional experiments on the ETHICS benchmark
(Hendrycks et al., 2021)
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Developing a French corpus of moral stories
(Leteno et al., new paper accepted at NACCL 2025)

● Adaptation of the Moral Stories dataset (Emelin et al., EMNLP 2021)
○ automatic translation from English to French
○ adaptation to French 
○ thorough manual verification

● Histoires Morales can be used for:
○ commonsense reasoning / social reasoning / moral reasoning
○ text classification
○ text generation

● Preprint: https://huggingface.co/papers/2501.17117
● Now available on HuggingFace:

https://huggingface.co/datasets/LabHC/histoires_morales
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Conclusion
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Contributions of the DIKé project (so far)

● SMaLL-100: Introducing Shallow Multilingual Machine Translation Model for Low-Resource 
Languages (EMNLP 2022)

● What Do Compressed Multilingual Machine Translation Models Forget? (EMNLP 2022, findings)
● An Investigation of Structures Responsible for Gender Bias in BERT and DistilBERT (IDA 2023)
● The Other Side of Compression: Measuring Bias in Pruned Transformers (IDA 2023)
● Mini Minds: Exploring Bebeshka and Zlata Baby Models (CoNLL 2023, BabyLM challenge)
● Fair Text Classification with Wasserstein Independence (EMNLP 2023)
● FrenchToxicityPrompts: a Large Benchmark for Evaluating and Mitigating Toxicity in French Texts

(LREC-COLING 2024, TRAC workshop)
● When Quantization Affects Confidence of Large Language Models? (NAACL 2024, findings)
● HISTOIRESMORALES: A French Dataset for Assessing Moral Alignment (NAACL 2025, to appear)
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Some challenges ahead

● Detection of harmful language generations (immoral behaviour, hate
speech, and beyond)

● In particular, implicit hate speech detection

● Mitigating harmful generations in quantized models
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